Qibo API QAOA示例
In [1]:
Copied!
import numpy as np
from qibo import models, hamiltonians
# Create XXZ Hamiltonian for six qubits
hamiltonian = hamiltonians.XXZ(6)
# Create QAOA model
qaoa = models.QAOA(hamiltonian)
# Optimize starting from a random guess for the variational parameters
initial_parameters = 0.01 * np.random.uniform(0,1,4)
best_energy, final_parameters, extra = qaoa.minimize(initial_parameters, method="BFGS")
import numpy as np
from qibo import models, hamiltonians
# Create XXZ Hamiltonian for six qubits
hamiltonian = hamiltonians.XXZ(6)
# Create QAOA model
qaoa = models.QAOA(hamiltonian)
# Optimize starting from a random guess for the variational parameters
initial_parameters = 0.01 * np.random.uniform(0,1,4)
best_energy, final_parameters, extra = qaoa.minimize(initial_parameters, method="BFGS")
[Qibo 0.2.21|INFO|2025-10-15 10:47:12]: Using qibojit (numba) backend on /CPU:0
In [2]:
Copied!
best_energy, final_parameters, extra
best_energy, final_parameters, extra
Out[2]:
(np.float64(3.4843735486539646),
array([0.41518376, 2.10033345, 0.4756647 , 3.63927783]),
message: Optimization terminated successfully.
success: True
status: 0
fun: 3.4843735486539646
x: [ 4.152e-01 2.100e+00 4.757e-01 3.639e+00]
nit: 18
jac: [-4.441e-06 -4.470e-06 6.020e-06 2.682e-07]
hess_inv: [[ 8.515e-02 9.424e-03 -3.494e-02 -3.539e-02]
[ 9.424e-03 1.262e-01 6.418e-02 2.017e-02]
[-3.494e-02 6.418e-02 1.066e-01 4.866e-02]
[-3.539e-02 2.017e-02 4.866e-02 1.069e-01]]
nfev: 140
njev: 28)
In [ ]:
Copied!